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Abstract. The shape of an experimental curve is considered in the scheme of information 
theory. The present approach gives an explanation for the Lorentzian shape which is very 
commonly observed for physical systems. 

1. Introduction 

The aim of this paper is to show how the Lorentzian shape of an experimental curve, so 
frequently encountered in the analysis of line spectra, can be derived in the scheme of 
information theory. Information theory was developed by Shannon and Wiener 
(Shannon 1948, Wiener 1948) who introduced the expression: 

as a measure of the uncertainty, or missing information, relative to the probability 
distribution P ( p , ,  p 2 ,  . . . , p,,,). One can obtain some important probability distribu- 
tions from the maximum-entropy principle (Shannon 1948, Jaynes 1957a, b), i.e. by 
choosing as the most probable, among all the distributions which satisfy some given 
constraints, the one which maximizes (1). For example, we obtain the equal probability 
distribution by requiring the norm to be fixed, the geometric distribution if the norm 
and the first moment are fixed, and the Gaussian distribution if the second moment is 
also supposed to be known. A similar derivation for the Poisson distribution has been 
obtained by Ingarden and Kossakowsky (1970) who have considered, instead of the 
usual Shannon information measure ( l ) ,  a special case of the generalized information 
defined by one of the authors (Kossakowsky 1968): 

which looks like a generalization of the Kullback relative information measure (Kull- 
back 1959). In expression ( 2 )  the quantity w, is a ‘weight’ given to the nth elementary 
event. The Poisson distribution has been obtained as the one which maximizes (2) 
requiring Zp, and Cnp, be fixed, and assuming wn = l / n ! .  Powles and Carazza 
(1970b), who were primarily interested in the analysis of the NMR lineshape, considered 
a spectral line f (o)  as a distribution of many indistinguishable contributions. As in 
statistical mechanics, they grouped the contributions to the spectra line in ranges k with 
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nk contributions at or near wk with ‘degeneracy’ gk, considering the resulting number of 
configurations: 

Then, maximizing the quantity In WE-B (which was considered the suitable definition of 
the missing information for a probability distribution of indistinguishable objects), and 
requiring the total intensity and the second moment of f ( w )  be k e d ,  they obta.ined for 
the most probable lineshape: 

i.e. 

The maximization of Shannon’s uncertainty, or of a suitable expression, thus leads 
(depending on the constraints which are imposed) to some typical shapes which are very 
commonly observed. We note, however, that the results we have summarized before 
can be applied to the information theory analysis of an experimental curve only when it 
can be considered a distribution of some events or physical objects. As this is not always 
the case, we wish to consider an experimental curve from the point of view of 
information theory, without considering it as a distribution of some event or object. 

2. The information provided by an experimental plot 

Let us consider the plot y, = y,, (x , )  of some continuous and positive quantity y, which is 
subject to experimental error, for the 2m + 1 values of x,  = ne (n = 0, * l ,  *2, . . . *m) 
of the variable x .  Let us recall that we are not interested in those experimental curves 
one can consider as distributions of events or physical entities. We will assume the point 
of view of a person who is looking at the plot with no knowledge either of the system the 
plot refers to, or of what y and x means. A person in this situation can ask himself what 
information is provided by the plot as to the relationship between y and x .  For any 
value x,, the dependent variable is not known exactly, but can in principle assume all the 
possible values around the plotted value y, within the experimental error *A,,. We thus 
assume that any value t,, in the range y, * A,, is equally probable ‘ a  priori’, each 
probability distribution p,(t,,) being, moreover, independent of the others. So we can 
associate with the plot a distribution: 

m 

where p,,(&) is equal to 1/2A, for 6, varying in the range y,, -A, s 6, d y,, +An. There 
is of course a lack of knowledge of the exact relationship between y and x,  for the y,(x,)  
are only known within the experimental error range. We propose to assume, as a 
measure of this lack of knowledge, the Shannon missing information U&) relative to 
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the distribution (6).  Using the missing information measure for a continuous many- 
dimensional distribution (Shannon 1948), we have: 

p In p d&-m. . . d tm (7) 

i.e., by our assumption concerning the distribution p ( t P m , .  . . , tm): 
m 

U&)= 1 ln2An. 
n=-m 

Let us now specify the dependence of An on yn. If the percentage error is constant, one 
has ( P  < 1) 

A n  = P Y n  (9) 

and thus, apart from additive constants: 
m 

H =  C Iny, 
n = - m  

is the uncertainty, or missing information, relative to the experimental plot. 

3. The Lorentzian shape 

Supposing now that Cy, and Zy,,x; have a fixed value, let us look for the values j ,  
which maximize H, subject to the constraints above. It can be done by means of 
Lagrange multipliers, maximizing: 

Z=H+A c y n + p  1 y,,x;. 
n n 

The condition for this is: 

1 

n Yn 
SI = 1 (- + A + px;)Syn = 0 

for any variation Sy, of the y,, and consequently: 

a 
b + x ,  Yn =- 

where a = -1/p and b = A/p have to be chosen so that the constraints are satisfied. We 
note that the values for Cy, and Zy,,x; cannot be fixed without limitations, if we want 
the y,, to be real and positive. The second variation S2Z of (1 1): 

is evidently negative when the ji,, are real, so the truncated Lorentzian shape (13) is 
indeed the one which maximizes H under the assumed constraints. The extension of 
the result for the case of continuous values of x is straightforward. We observe, 
moreover, that if only Zy, is supposed to be known, by maximizing H we obtain the 
result that the yn are all equal to a constant. The assumption that An is proportional to 
some power of yn leads to the same results. 
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4. Conclusions 

This simple result is of interest for physical systems. It is often the case that the total 
intensity and the second moment of an experimental curve are known (sum rules). Then 
the usual information theory approach gives a Gaussian shape (Jaynes 1957a, b, Powles 
and Carazza 1970a). The present approach gives an explanation for the Lorentzian 
shape which is very commonly observed for physical systems. 
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