On the Lorentzian shape and the information provided by an experimental plot

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 91069
(http://iopscience.iop.org/0305-4470/9/7/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:44

Please note that terms and conditions apply.

On the Lorentzian shape and the information provided by an experimental plot

B Carazza
Istituto di Fisica, Universitá di Parma, 43100 Parma, Italy

Received 23 December 1974, in final form 5 February 1976

Abstract

The shape of an experimental curve is considered in the scheme of information theory. The present approach gives an explanation for the Lorentzian shape which is very commonly observed for physical systems.

1. Introduction

The aim of this paper is to show how the Lorentzian shape of an experimental curve, so frequently encountered in the analysis of line spectra, can be derived in the scheme of information theory. Information theory was developed by Shannon and Wiener (Shannon 1948, Wiener 1948) who introduced the expression:

$$
\begin{equation*}
U_{\mathrm{S}}(P)=-\sum p_{n} \ln p_{n} \tag{1}
\end{equation*}
$$

as a measure of the uncertainty, or missing information, relative to the probability distribution $P\left(p_{1}, p_{2}, \ldots, p_{m}\right)$. One can obtain some important probability distributions from the maximum-entropy principle (Shannon 1948, Jaynes 1957a, b), i.e. by choosing as the most probable, among all the distributions which satisfy some given constraints, the one which maximizes (1). For example, we obtain the equal probability distribution by requiring the norm to be fixed, the geometric distribution if the norm and the first moment are fixed, and the Gaussian distribution if the second moment is also supposed to be known. A similar derivation for the Poisson distribution has been obtained by Ingarden and Kossakowsky (1970) who have considered, instead of the usual Shannon information measure (1), a special case of the generalized information defined by one of the authors (Kossakowsky 1968):

$$
\begin{equation*}
U_{\mathbf{K}}(P)=-\sum p_{n} \ln \left(p_{n} / w_{n}\right) \tag{2}
\end{equation*}
$$

which looks like a generalization of the Kullback relative information measure (Kullback 1959). In expression (2) the quantity w_{n} is a 'weight' given to the nth elementary event. The Poisson distribution has been obtained as the one which maximizes (2) requiring Σp_{n} and $\Sigma n p_{n}$ be fixed, and assuming $w_{n}=1 / n!$. Powles and Carazza (1970b), who were primarily interested in the analysis of the NMR lineshape, considered a spectral line $f(\omega)$ as a distribution of many indistinguishable contributions. As in statistical mechanics, they grouped the contributions to the spectra line in ranges k with
n_{k} contributions at or near ω_{k} with 'degeneracy' g_{k}, considering the resulting number of configurations:

$$
\begin{equation*}
W_{\mathrm{E}-\mathrm{B}}=\prod_{k} \frac{\left(n_{k}+g_{k}-1\right)!}{n_{k}!\left(g_{k}-1\right)!} . \tag{3}
\end{equation*}
$$

Then, maximizing the quantity $\ln W_{E-\mathrm{B}}$ (which was considered the suitable definition of the missing information for a probability distribution of indistinguishable objects), and requiring the total intensity and the second moment of $f(\omega)$ be fixed, they obtained for the most probable lineshape:

$$
\begin{equation*}
n_{k}=\frac{g_{k}}{\exp \left(\beta+\lambda \omega_{k}^{2}\right)-1} \tag{4}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
f(\omega)=\frac{A}{\exp \left(\beta+\lambda \omega^{2}\right)-1} . \tag{5}
\end{equation*}
$$

The maximization of Shannon's uncertainty, or of a suitable expression, thus leads (depending on the constraints which are imposed) to some typical shapes which are very commonly observed. We note, however, that the results we have summarized before can be applied to the information theory analysis of an experimental curve only when it can be considered a distribution of some events or physical objects. As this is not always the case, we wish to consider an experimental curve from the point of view of information theory, without considering it as a distribution of some event or object.

2. The information provided by an experimental plot

Let us consider the plot $y_{n}=y_{n}\left(x_{n}\right)$ of some continuous and positive quantity y, which is subject to experimental error, for the $2 m+1$ values of $x_{n}=n \epsilon(n=0, \pm 1, \pm 2, \ldots \pm m)$ of the variable x. Let us recall that we are not interested in those experimental curves one can consider as distributions of events or physical entities. We will assume the point of view of a person who is looking at the plot with no knowledge either of the system the plot refers to, or of what y and x means. A person in this situation can ask himself what information is provided by the plot as to the relationship between y and x. For any value x_{n}, the dependent variable is not known exactly, but can in principle assume all the possible values around the plotted value y_{n} within the experimental error $\pm \Delta_{n}$. We thus assume that any value ξ_{n} in the range $y_{n} \pm \Delta_{n}$ is equally probable 'a priori', each probability distribution $\rho_{n}\left(\xi_{n}\right)$ being, moreover, independent of the others. So we can associate with the plot a distribution:

$$
\begin{equation*}
\rho\left(\xi_{-m}, \xi-m+1, \ldots, \xi_{m}\right)=\prod_{n=-m}^{m} \rho_{n}\left(\xi_{n}\right) \tag{6}
\end{equation*}
$$

where $\rho_{n}\left(\xi_{n}\right)$ is equal to $1 / 2 \Delta_{n}$ for ξ_{n} varying in the range $y_{n}-\Delta_{n} \leqslant \xi_{n} \leqslant y_{n}+\Delta_{n}$. There is of course a lack of knowledge of the exact relationship between y and x, for the $y_{n}\left(x_{n}\right)$ are only known within the experimental error range. We propose to assume, as a measure of this lack of knowledge, the Shannon missing information $U_{s}(\rho)$ relative to
the distribution (6). Using the missing information measure for a continuous manydimensional distribution (Shannon 1948), we have:

$$
\begin{equation*}
U_{\mathrm{S}}(\rho)=-\int_{y-m-\Delta_{-m}}^{y_{-m}+\Delta_{-m}} \ldots \int_{y_{m}-\Delta_{m}}^{y_{m}+\Delta_{m}} \rho \ln \rho \mathrm{~d} \xi_{-m} \ldots \mathrm{~d} \xi_{m} \tag{7}
\end{equation*}
$$

i.e., by our assumption concerning the distribution $\rho\left(\xi_{-m}, \ldots, \xi_{m}\right)$:

$$
\begin{equation*}
U_{\mathrm{S}}(\rho)=\sum_{n=-m}^{m} \ln 2 \Delta_{n} \tag{8}
\end{equation*}
$$

Let us now specify the dependence of Δ_{n} on y_{n}. If the percentage error is constant, one has ($\beta<1$)

$$
\begin{equation*}
\Delta_{n}=\beta y_{n} \tag{9}
\end{equation*}
$$

and thus, apart from additive constants:

$$
\begin{equation*}
H=\sum_{n=-m}^{m} \ln y_{n} \tag{10}
\end{equation*}
$$

is the uncertainty, or missing information, relative to the experimental plot.

3. The Lorentzian shape

Supposing now that Σy_{n} and $\Sigma y_{n} x_{n}^{2}$ have a fixed value, let us look for the values \bar{y}_{n} which maximize H, subject to the constraints above. It can be done by means of Lagrange multipliers, maximizing:

$$
\begin{equation*}
I=H+\lambda \sum_{n} y_{n}+\mu \sum_{n} y_{n} x_{n}^{2} . \tag{11}
\end{equation*}
$$

The condition for this is:

$$
\begin{equation*}
\delta I=\sum_{n}\left(\frac{1}{y_{n}}+\lambda+\mu x_{n}^{2}\right) \delta y_{n}=0 \tag{12}
\end{equation*}
$$

for any variation δy_{n} of the y_{n}, and consequently:

$$
\begin{equation*}
\bar{y}_{n}=\frac{a}{b+x_{n}^{2}} \tag{13}
\end{equation*}
$$

where $a=-1 / \mu$ and $b=\lambda / \mu$ have to be chosen so that the constraints are satisfied. We note that the values for Σy_{n} and $\Sigma y_{n} x_{n}^{2}$ cannot be fixed without limitations, if we want the \bar{y}_{n} to be real and positive. The second variation $\delta^{2} I$ of (11):

$$
\begin{equation*}
\delta^{2} I=-\sum_{n} \frac{1}{\bar{y}_{n}^{2}}\left(\delta y_{n}\right)^{2} \tag{14}
\end{equation*}
$$

is evidently negative when the \bar{y}_{n} are real, so the truncated Lorentzian shape (13) is indeed the one which maximizes H under the assumed constraints. The extension of the result for the case of continuous values of x is straightforward. We observe, moreover, that if only Σy_{n} is supposed to be known, by maximizing H we obtain the result that the y_{n} are all equal to a constant. The assumption that Δ_{n} is proportional to some power of y_{n} leads to the same results.

4. Conclusions

This simple result is of interest for physical systems. It is often the case that the total intensity and the second moment of an experimental curve are known (sum rules). Then the usual information theory approach gives a Gaussian shape (Jaynes 1957a, b, Powles and Carazza 1970a). The present approach gives an explanation for the Lorentzian shape which is very commonly observed for physical systems.

Acknowledgments

Thanks are due to Professor J G Powles for his kind hospitality at the University of Kent, Canterbury, where this work was conceived, and for his valuable suggestions and remarks.

References

Ingarden R S and Kossakowsky A 1970 Institute of Physics, Nıcholas Copernicus University, Torun, Poland, Preprint No. 104
Jaynes E T 1957a Phys. Rev. 106620

- 1957b Phys. Rev. 108171

Kossakowsky A 1968 Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 16349
Kullback S 1959 Information Theory and Statistics (New York: Wiley)
Powles J G and Carazza B 1970a Magnetic Resonance (New York: Plenum) p 133

- 1970b J. Phys. A: Gen. Phys. 3335

Shannon C E 1948 Bell Syst. Tech. J. 27 379, 623
Wiener N 1948 Cybernetics (New York: Wiley)

